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We consider two simple geometric models that can describe the kinetics of fragmentation of two-
dimensional particles and stochastic fractals. We find a hierarchy of independent exponents suggesting the
existence of multiple-phase boundary for the shattering transition when two orthogonal cracks are placed
randomly on a fragment~modelA!. At the same time we find a unique exponent suggesting a single phase
boundary when four equal-sized fragments are produced at each fragmentation event~modelB!. We invoke the
multifractal formalism to further support the existence of multiple phase boundaries. In modelA, for each
choice of homogeneity index, the resultant fragments’ distribution exhibits multifractality on a unique support
when describing fragmentation processes and on one of infinitely many possible supports when describing
stochastic fractals. ModelB obeys simple scaling and produces self-similar fractals when fragments are
removed from the system at each time step.@S1063-651X~96!02508-1#

PACS number~s!: 05.20.2y, 02.50.2r

I. INTRODUCTION

Fragmentation is a phenomenon that occurs in numerous
physical, chemical, and geological processes. Recently, it has
been of considerable interest@1–4#. In general, it is an irre-
versible kinetic process in which a collection of fragments is
sequentially broken. Although conceptually it is quite simple
to understand, its kinetic and many other physical quantities
are not fully understood, especially in higher dimensions.
There have been a number of different approaches to under-
standing the fragmentation phenomena of one-dimensional
particles analytically. These include using the maximum en-
tropy method@5#, using statistical and combinatorial argu-
ments @6,7#, and using a kinetic equation. It is the kinetic
equation approach, developed by Filippov@8# after its origi-
nal proposal by Kolmogorov@9#, that has provided much of
our theoretical understanding. Interestingly, it has also been
used successfully to describe other phenomena; for example,
random sequential adsorption@10,11# and stochastic fractals
@12,13#.

In one dimension the fragmentation process is well stud-
ied with a large class of exact and explicit solutions for the
particle-size distribution function using different fragmenta-
tion rules @14,15#, in addition to scaling solutions@16,17#.
The scaling solutions are of considerable importance since
most experimental systems reach this behavior in the long
time. These are essentially the solutions in the long-time
~t→`! and small-size~x→0! limit, where the probability-
distribution function evolves into a simpler form since it re-
duces the two variable problems to a single variable~in one
dimension!. Moreover, this form is universal in the sense that
it does not depend on the initial condition. A number of

interesting features have been found in one-dimensional
problems, such as a shattering transition that is accompanied
by the violation of scaling and absence of self-averaging
@18#. However, recently much effort has been devoted to
higher-dimensional problems where particles are character-
ized by both size and shape, unlike in one dimension where
size or mass is the only dynamical quantity of interest. This
is motivated by the desire to move towards an understanding
of the physical role played by shape in the fragmenting sys-
tems, since in reality particles are identified by their size and
shape. Studying the fragmentation phenomena in higher di-
mensions has revealed interesting and nontrivial features
@2,4# with unexpectedly rich patterns of fragments.

In higher dimensions the scaling regime does not reduce
to a single variable, but more than one intriguing variable,
which causes the system to show multiscaling@2#. This par-
ticular feature is the signature of large fluctuations and
causes the absence of self-averaging. One can immediately
anticipate the occurrence of multifractality that became es-
sential in recent years, to get a deeper insight into the struc-
ture of such a wildly varying system. Multifractal phenom-
ena have become very active in the research area and are
found to describe many physical systems in different con-
texts. These include voltage and current distribution in ran-
dom resistor networks@26#, growth by diffusion-limited ag-
gregation~DLA ! @27#, collision cascade@28#, and percolation
and fracture@29#. The basic idea of multifractality is that,
given a fragments’ distribution on a measure support charac-
terized by a set of points (Df), a richer structure can be
invoked. Namely, the whole set (Df) can be partioned into a
hierarchy of subsets with their own fractal dimensionsf ~a!.
The spectrum of these dimensions gives the full character-
ization of the object. Different clusters corresponding to their
fractal subsets are scaled with their own exponents.

The general form of the fragmentation equation when a
given d-dimensional particle fragments into 2d pieces per
fragmentation event is given by
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where f ($xi%;t) is the probability-distribution function of a
d-dimensional hypercuboid-shaped object of sides$xi% at
time t andF(x12x18 ,x18 ;...;xd2xd8 ,xd8) is the rate of frag-
mentation of a particle characterized byx1, x2,...,xd into 2d

fragmented smaller particles characterized by their sides of
(xi2xi8) and xi8 . The d number of integrals on$xi8% vari-
ables is equivalent to placingd number of orthogonal cracks
such that they are equal and parallel to their sides to produce
2d fragments at each fragmentation event. Solving this gen-
eral equation for some fragmentation rule is very difficult.
However, for some simple choice of fragmentation rule, the
explicit solution to this general problem is found in@4#. Ob-
viously in reality the cracks should appear at random on the
object to be fragmented to produce a large number of frag-
ments with a varying number of sides. The present kinetic
approach is a simplified version of this real picture; however,
it has been found that this simple model can provide the
basic physics of the fragmenting systems.

In this paper we restrict ourselves to two dimensions,
which is the minimum dimension to exhibit the role played
by shape. The rest of this paper is organized as follows. We
attempt to investigate the shattering transition in order to
explain the rich pattern formed in the long time. Our treat-
ment is based on considering the asymptotic regime to obtain
information about scaling. Through our approach a new fea-
ture appears: instead of a unique-phase boundary we find
infinitely many phase boundaries because of the multiple
conservation laws. This is in contrast to@3#, where one vari-
able was associated with energy and the other with mass and
a single phase boundary was found. In order to clarify the
origin of this behavior we invoked the idea of multifractality,
which appears to require not one but infinitely many scaling
exponents. We seek to develop a one-to-one correspondence
between the existence of multiple phase boundaries and mul-
tiple scaling exponents. We also find that some fragmenta-
tion rules do not yield a single measure support, instead they
have an infinite number for each choice of homogeneity in-
dex. We consider a second model in two dimensions and we
seek to explain the difference between these models.

II. SHATTERING TRANSITION

The fragmentation equation in two dimensions is
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where s51,2,3,4 andF(x1 ,x2x1 ;y1 ,y2y1) describes the
rate at which objects having sidesx andy break to produce
fragments of sides (x1 ,y1), (x2x1 ,y1) (x1 ,y2y1), and
(x2x1 ,y2y1). This two-dimensional problem can be
viewed as orthogonal, cross-shaped cracks are placed on the
fragments that remain fixed at their spatial position, but the
cracks are placed on objects to be fragmented homoge-
neously. However, the way the cracks are to be placed is
determined by the choice of the kernel. Alternatively, we can
assume that there is a perfect mixing of fragments that makes
this kinetic approach so appealing to describe many physical
systems, including the ball-milling and batch grinding of the
comminution process. However, we can choose, for ex-
ample,s51,2,3, which simply implies the removal of 42s of
the fragments at each event to form a stochastic fractal
@12,13# at long times. We define the moment of the distribu-
tion function as

Mm,n~ t !5E
0

`

xm21dxE
0

`

yn21dy f~x,y;t !, ~3!

which is the double Mellin transform of the probability dis-
tribution function f (x,y;t), wherem,n.0 is required for
convergence, and whereM1,1(t) is the number of fragments
in the system at any timet andM2,2(t) is the total area of the
fragments. Since moments keep the signature of the distribu-
tion function, it is easy to deal with in some cases, to get the
main features of the fragmenting systems.

A. Model A

We choose to study a homogeneous rate kernel@3,21#,

F~x1 ,x2 ;y1 ,y2!5~x11x2!
b1~y11y2!

b2, ~4!

whereb1 andb2 are known as the homogeneity indices. This
choice of fragmentation implies that the distribution of par-
ticles upon breakage depends only on the ratio of the size of
the broken and breaking particles. The breakup timet is
defined as

1
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5E

0

x

dx1E
0

y

dy1F~x1 ,x2x1 ;y1 ,y2y1!

5xb111yb211. ~5!

This immediately confirms that for a certain choice ofb1 and
b2 the fragmentation process can be fast enough such that
subsequent generation of fragments has a shorter lifetime
than the previous generation. In this case shattering is antici-
pated in which mass is lost to a dust of zero-size particles
and is identified by the singularity of the kinetic exponent
@11,15#.

The model in question describes a system in which par-
ticles are selected for fragmentation with a rate determined
by their area and shape. The relative importance of area and
shape is determined by their homogeneity indicesb1 andb2.
That is, ifb1.b2, for example, different particles with equal
area no longer compete on an equal footing to be frag-
mented, but rectangles with longer sides along thex axis are
more likely to be picked for fragmentation than others. Nev-
ertheless, once a fragment has been chosen for fragmenta-
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tion, products of any area and shape are equally likely to
occur. Substituting this choice of kernel into the rate equa-
tion yields

] f ~x,y,;t !
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`
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We can substitute the definition of the moment into the
above equation to obtain a rate equation for the moment,

]Mm,n~ t !

]t
5S s

mn
21DMm1b111,n1b211 . ~7!

An interesting feature of the above equation is that there are
infinitely many conserved~time-independent! moments sat-
isfying mn5s ~multiple conservation laws!. This simply re-
flects the fact that fragments with a given area can have an
infinite number of different shapes. We choosem5m* ,
wherem* is any number; then the rate equation for the mo-
ment determines then value to be s/m* , such that
Mm* ,s/m* (t) is time independent. As in the one-dimensional
case we propose a general scaling ansatz ast→` to be

f ~x1 ,x2 ,;t !;twf~x1t
z1,x2t

z2!, ~8!

where thezi ’s are known as the kinetic exponents. This an-
satz is only true when bothz1 andz2 are positive. Substitut-

ing into the definition of the moment and insisting that the
momentMm* ,s/m* (t) be a conserved quantity, we immedi-
ately obtain

w5m* z11
s

m*
z2 . ~9!

For a fixed positivez1 andz2 the curvew againstm* is an
upward convex in shape. This implies that for eachw value
there are two differentm* values, saym* andm†, except
when the gradient is zero. Using these two relations forw for
two different m* values (m* ,m†), we can expressz1 in
terms ofz2,

z15
s

m*m† z2 . ~10!

The above equation implies that the two numbersm* andm†

corresponding to the samew value will determine the ratio
of thez1 andz2 values. Note that, ifz1 andz2 are of opposite
sign it is not possible to have two numbers give the samew
value, as one can see from the asymptotic behavior ofw
againstm* . Although it is possible when both are negative,
we do not need to concern ourselves about it since scaling is
not valid in this case.

We now substitute the scaling ansatz into the rate equa-
tion to get

tz1~b111!1z2~b211!215

2jb111j2
b211f~j1 ,j2!1sE
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`

h1
b1dh1E

j2

`

dh2h2
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wf~j1 ,j2!1zij i
df~j1 ,j2!

dj i

. ~11!

We demand that a scaling or time-invariant solution exists,
and this immediately yields

z1~b111!1z2~b211!51. ~12!

Combining this with Eq.~10! we find

z15
s

s~b111!1m*m†~b211!
~13!

and

z25
m*m†

s~b111!1m*m†~b211!
. ~14!

Thus any two nonzero and unequal numbers can give a set of
kinetic exponents to reveal that there exists a hierarchy of
exponents. The shattering is identified by the singularity in
these exponents and hence we have an infinite-number phase
boundary in the~b1,b2! plane, and all the phase lines meet at
~21,21!.

B. Model B

We shall now consider a different model by choosing the
following homogeneous kernels:

F~x1 ,x2 ;y1 ,y2!5~x11x2!
b1~y11y2!

b2d~2x12x!

3d~2y12y!. ~15!

This model describes the case when two orthogonal cracks
are placed to produce four fragments of equal size and shape.
Thus, it is just one of the infinitely many possible ways of
placing cracks in the former model. The breakup time
t(x,y)5x2b1y2b2 again confirms that for certain choices of
homogeneity indices the processes can be fast enough to
show the shattering transition. Using this kernel the rate
equation becomes

] f ~x,y;t !

]t
52

1

22
xb1yb2f ~x,y;t !

12b11b2sxb1xb2f ~2x,2y;t !, ~16!
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and substituting the definition of the moments into the rate
equation we obtain the rate equation for the moments as

]Mm,n~ t !

]t
52S 1222 s

2m1nDMm1b1 ,n1b2
~ t !. ~17!

Notice that this again gives infinitely many hidden conserved
quantities. That is, assumingm5m* , any positive number as
before, the above equation implies that
Mm* ,21 ln s/ln 22m* (t) is the time-independent quantity. We
now substitute the scaling ansatz into the rate equation to
obtain

tz1b11z2b121

5
j1

b1j2
b2$2 1

4f~j1 ,j2!12b11b212f~2j1,2j2!%

wf~j1 ,j2!1zij i
df~j1 ,j2!

dj i

. ~18!

Insisting that a scaling exists gives

z1b11z2b251. ~19!

Substituting the scaling ansatz into the definition of the mo-

ment and insisting again thatM21 ln s/ln 22m*
m* (t) be con-

served, we obtain

w5m* z11S 21
ln s

ln 2
2m* D z2 . ~20!

Choosing any other nonzero and unequal number, saym†

instead ofm* , yields

z15z2[z. ~21!

Combining this with Eq.~19! we immediately get

z5
1

b11b2
. ~22!

We now attempt to solve the rate equation directly to find the
kinetic exponent. We multiply the rate equation byt on both
sides to get

t
] f ~x1 ,x2 ;t !

]t
52

1

22
j1

b1j2
b2f ~x1 ,x2 ;t !

122~2j1!
b1~2j2!

b2f ~2x1,2x2 ;t !, ~23!

wherej i5xi t
1/(b11b2). In the limit t→0 andx→`, such that

ji→constant quantity, one can solve the equation to give

f ~x1 ,x2 ;t !;T~ t !t2@114/~b11b2!#f~j1 ,j2!. ~24!

Substituting this into the definition of the moment and using
the condition thatMm* ,21 ln s/ln 22m* (t) is time independent
gives

f ~x1 ,x2 ;t !;t4/~b11b2!f~j1 ,j2!. ~25!

The same kinetic exponent has been found in Ref.@4# in
which it has been derived from the explicit solution and
proved that the singularity in this exponent leads to the shat-

tering transition. The appearance of the unique kinetic expo-
nent confirms that there is a single phase boundary for the
shattering transition in the plane~b1,b2!.

III. ASYMPTOTIC SOLUTIONS

A. Model A

We now invoke the idea of multifractality that can char-
acterize the rich pattern of the resultant fragments’ distribu-
tion in the long-time limit. Using Charlesby’s method, the
moment equation~7! can be iterated to get all the higher
derivatives of the moments. These can then be substituted
into a Taylor-series expansion ofMm,n(t) aboutt50 to find
the solution of Eq.~7! in terms of generalized hypergeomet-
ric function @19#,

Mm,n~ t !52F2S a1 ,a2 ;
m

b111
,

n

b211
;2t D , ~26!

where, definingG54s~b111!~b211!, a6 are given by
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4~b111!2~b211!2
. ~27!

We are only interested in the long-time behavior of the mo-
ment. The asymptotic expansion of the generalized hyper-
geometric function for large timet gives

Mm,n~ t !

'

GS m

b111DGS n

b211DG~a22a1!

G~a1!GF S m

b111D2a2GGF S n

b211D2a2G t
2a2,

~28!

providedb1,b2Þ21 for which the moment does not show
power-law behavior.

B. Model B

For this splitting model we already know that the system
reaches a scaling regime with the kinetic exponent given by
Eq. ~22!. Knowledge of this information is sufficient to write
the asymptotic solution for the moment, providedb11b2.0
is as

Mm,n~ t !;A~m,n!t2@m1n2~21 ln s/ ln 2!#/~b11b2!, ~29!

where, 21ln s/ln 2 is determined by using hidden conserved
quantities for which the moment becomes time independent.
This solution has been derived in Ref.@21# explicitly using
different methods.

IV. FRACTAL DIMENSIONS

A. Model A

When 1,s,4, at each time step 42s fragments are re-
moved from the system that do not affect the kinetics of the
system to describe the creation of stochastic fractals. In order
to determine the fractal dimension of the support, we find it
convenient to use the box-counting method. We may choose
to associate each hidden conserved quantity with a set of
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points inR
2 space. In order to measure the set we can sub-

divide the space into small squares of sidesdm* , where
dm* is defined as

dm*5AMm* ,4/m* ~ t !

M1,1~ t !
, ~30!

such thatm i(dm* ) denotes the measure within thei th box.
Obviously, whens54 the measure will count the complete
set of points in the plane asdm*→0 and independent ofm* .
However, for 1,s<4, the measure will depend on thes

value as well as on them* value, as we shall see now. For
1,s<4 and in the limitdm*→0 the total number of boxes
required to cover the set of points can be expressed as

^N~dm* !&;d
m*
2g~m* ,b1 ,b2!$A~b22b1!21G2~b11b212!%

5d
m*
2Df ~m* ,b1 ,b2!

. ~31!

We define A65m* (b211)64/m* (b111), to express
g~m* ,b1,b2! as

g~m* ,b1 ,b2!5
2

A12AA2
2 1G2~b11b212!1A~b22b2!

21G
. ~32!

The exponentDf is the Hausdorff-Besicovitch dimension
that measures the properties of the set of points. Note that
g(m* ,b1 ,b2)5g(s/m* ,b1 ,b2), and in the limitm*→`,

g~m* ,b1 ,b2!5
2

A~b22b1!
21G2~b11b212!

.

~33!

Moreover, whens54, Df is independent ofm* and indi-
vidualb values, i.e., independent of the intensity of fragmen-
tation. However, for 1,s,4 and for fixedb1,b2 values,Df
increases monotonically against (m*14/m* ) starting at a
value when (m*14/m* ) is minimum and saturates at 2 as
m*→`. Furthermore, whenb15b25b @21# Df is indepen-
dent ofb.

B. Model B

As before we may choose to associate each hidden con-
served quantity with a set of points inR2 space. This space
can be subdivided into boxes of sides

dm*5AMm* ,42m* ~ t !

M1,1~ t !
. ~34!

In the limit sm*→0 the total number of boxes required to
cover the set of points can be expressed as

^N~ t !&;dm*
2 ln s/ ln 2 . ~35!

Unlike modelA, here the fractal dimension is independent of
them* value and of homogeneity indices. This reveals that a
single scaling exponentDf can describe such a self-similar
structure.

V. MULTIFRACTALITY

A. Model A

It is important to realize that a single exponentDf is not
sufficient to characterize the present system under investiga-
tion. To show this we now express the quantityMm,1(t) in
terms of the box lengthdm* asdm*→0 to give

Mm,1~dm* !;d
m*
2g~m* ,b1 ,b2!$A@m~b211!2~b111!#21G2m~b211!2~b111!%

. ~36!

Obviously, the exponent of the above equation whenm51
gives the dimension of the measure of the supportDf .

From the definition of the moment we can write

Mq,1~ t !5E xqn~x,t !d ln x5E eF~x,q,t !d ln x, ~37!

wheren(x,t)5*dy f(x,y;t), n(x,t)dln x is the number of
branches characterized byx in the interval@lnx,lnx1dlnx#
andF(x,q,t)5ln[n(x,t)]1qlnx. In the multifractal formal-
ism the quantityMq,1(t) is often identified as the partition

function motivated by the analogy with thermodynamics.
Now, following the approach of Refs.@22,23#, the integral in
Eq. ~37! can be evaluated by the steepest-descent method. If,
say, x* is the value for whichF(x,q,t) has a maximum
value, then we have

] ln n~x,t !

] ln x U
x5x*

52q. ~38!

In general, for each value ofq there is a corresponding value
of x5x* (q), and so immediately one can write the follow-
ing scaling ansatz:
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x*;A~q!dm*
2a~q! , ~39!

n~x* ,dm* !;B~q!dm*
f ~q! , ~40!

since

Mq,1~dm* !;dm*
2qa~q!2 f ~q! . ~41!

As q varies from2` to `, x* takes all the values depending
on q values and hence-forth we call itx instead ofx* . We
find it convenient to define the quantity

n5
ln x

ln xmax
5

a~q!

a~`!
. ~42!

Therefore, for each value ofn there exists a corresponding
valueq(x). From ~40! we get

n~x,dm* !;C~n!dm*
F~n! , ~43!

whereF~n!5f „q~n!… is the spectrum of the fractal subset and
C(n)5B„q~n!…. Using ~39! and ~40! we can also write

n~x!;C~n!x2F~n!/na~`!. ~44!

This scaling form expresses the fact that the fragmentation
process can be partitioned into subsets when each is charac-
terized by the valuen5lnx/lnxmax. Each subset has an inde-
pendent fractal dimension given byF~n! and by the singu-
larity exponenta~`!. Scaling of this kind has also been
found for the random resistor network and in the context of
diffusion-limited aggregation.

We shall now attempt to find the explicit expressions for
these exponents. In order to do this we write thed measure
of the weighted box number as

Mm,1~d,dm* !5(
i

m i
mdm*

d
5Mm,1~dm* !dm*

d . ~45!

It follows from Eq. ~43! that asdm*→0,

Mm,1~d,dm* !→ H 0` if d.t~m!,
if d,t~m!. ~46!

The critical value for which the measure tends to a finite
value is called the mass exponentdc5t(m). Note that
dc5t~1! is the dimension of the measure support. We thus

see thatMm,1(dm* ) can be partioned into boxes of sidesdm*
such that the probabilities ofm i(dm* ) are normalized if we
replacem by

11~s21!k[q~k!. ~47!

Hence we can write the weighted box number~the so-called
partition function! as

Mk,1~dm* !5(
i51

m i
k~m,b1 ,b2!

~dm* !;d
m*
2t~k,b1 ,b2!

.

~48!

Using ~47! in ~36! and then comparing with~48!, we imme-
diately can obtain the expression fort(k), the mass exponent
to be

t~k!5g~m* ,b1 ,b2!$A@~b22b1!1~s21!~b211!k#21G

2~b211!~s21!k2~b11b212!%, ~49!

which meets the essential requirement, namely,t~0! is the
dimension of the support andt~1!50. We thus see that there
exists a spectrum of mass exponentt(k), which character-
izes the distribution of the particle size. Nevertheless, the
mass exponentt(k) is nonlinear, which simply reveals that
there exists a spectrum fractal subset for each support
whether the support itself is fractal or not. To find the fractal
subset we use the usual Legendre transform of the indepen-
dent variablest and k to the independent variablea and
f ~a!:

a~k!52
dt~k!

dk
, ~50!

and

f „a~k!…5ka~k!1t~k!. ~51!

These relations yield

a~k!5g~m* ,b1 ,b2!~s21!~b211!H 1
2

~b22b1!~b211!~s21!1~b211!~s21!k

A@~b22b1!1~s21!~b211!k#21G
J
~52!

and

f „a~k!…5g~m* ,b1 ,b2!H A@~b22b1!1~s21!~b211!k#21G2~b11b212!

2
~s21!~b22b1!~b211!k1~s21!2~b211!2k2

A@~b22b1!1~s21!~b211!k#21G
J . ~53!
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Note that all the exponents depend on the homogeneity indi-
ces if onlyb1Þb2. We find that if we choose homogeneity
indices to be at any point in the shattering regime, the whole
formalism and analysis breaks down. That is, in these re-
gimes the moment does not show power-law behavior. Of
course, one point on the phase boundary where all the phase
boundary meets~b15b2521!, the moments exhibit expo-
nential behavior instead of power-law behavior. Physically
the f „a(k)… versusa curve simply suggests the existence of
intertwined fractal subsets describing the measure support.
The expression forf „a(k)… is strictly convex in nature, as
can be seen from Fig. 1. We find that when the system de-
scribes stochastic fractals there exists a hierarchy of fractal
supportDf that depends onm* for a fixed value of homoge-
neity indices. In Fig. 1 we plotf „a(k)… againsta(k) for
three differentm* values whenb15b2 to show that there can
be infinitely many possible supports on which a measure can
be distributed when fragments are removed from the system
at each event. It is to see that the preceding analysis can be
repeated forM1,q(t) as a partition function since the defini-
tion of moments are symmetric in their variables.

B. Model B

Doing a similar calculation for the second model one can
immediately find that despite the fact that there exists infi-
nitely many hidden conserved quantities, the fractal dimen-
sion is independent ofm* ’s and homogeneity indices, giving
a unique measurement, not a spectrum, as it should be,

Df5
ln s

ln 2
, ~54!

whereDf5 f ~a! andt(k)5Df(12k) to reveal that for 1,s
,4, the system describes the self-similar fractals and hence
confirms the existence of scaling. In this case, the same scal-
ing exponentDf describes the asymptotic behavior of all the
characteristic lengths@Lm(t)5AmMm,1(t)/M1,2(t)# i.e., inde-

pendent of the definition of the characteristic length. Evi-
dently, there is a constant gap between the consecutive mo-
ments. Note that fors54 we again recover the full set of
points in the plane~Df52!.

VI. CONCLUSIONS

Model B we consider as a supporting model since it is
simple and its important aspect is known from Ref.@4#. It is
modelA that is of primary concern in understanding what
shattering means when there is more than one dynamical
variable in the system. We find that instead of a unique phase
boundary for the shattering transition we find a multiple
phase boundary. We attempt to explain this surprising fea-
ture by the idea of multifractal formalism. In the case of
modelA the support can be partitioned into infinitely many
subsets of their own fractal dimensions. That is, each subset
scales with different kinetic exponentsvis-a-vis different
fractal dimensions. Consequently, each subset has its own
phase boundary for which the corresponding subset of the
support goes into the shattering transition.

When the system describes the fragmentation process~s
54!, we find that the system gives a unique measure support
~Df52! on which subsets can be distributed. However, any
observable fluctuates strongly from one realization to the
other. Although each realization is statistically self-similar in
these fluctuations, it means that averaged quantities of any
observable can be measured with a reasonable accuracy only
through ensemble averaging. That is, a single experiment for
a longer time will not give any averaged quantities with good
accuracy, but a large number of independent experiments are
required, which is a very important property to know for real
or numerical experiments. But when describing stochastic
fractals, one associates pictures of wildly varying probabili-
ties of the measure, since at each realization the dimension of
the support can be different. This reflects the fact that in the
case when a system describes stochastic fractals, the entropy
of the system has one more source than in the fragmentation
process. This extra source arises due to the competition
among the fractal support for differentm* in a given experi-
ment. Note that when three fragments are removed from the
system at each time event~s51!, the dimension of the mea-
sure support (Df) is zero where the measure can be distrib-
uted.

It is interesting to notice the connection between modelA
for 1,s,4 and the random sequential adsorption~RSA!. For
s52 this model has been discussed in the context of the RSA
of needles in Ref.@30#. We remark that if objects are of a
definite size and once deposited are clamped in their posi-
tion, the resultant configurations in the long-time limit are
highly nonergodic with a strong non-Markovian nature. Such
a system has a universal feature described by the jamming
limit, which is less than random close packing. Our model
for 1,s,4 can be thought of as the deposition of 42s par-
ticles at each time step. The difference between the true RSA
and our system is that for 1,s,4 particles are deposited in a
rather restricted set of positions and the size of the particles
to be deposited is determined by the available space. Conse-
quently, the system gains the ergodic nature with which the
scaling is possible, and in the long time instead of reaching a
jamming limit it shows power-law behavior. Although the

FIG. 1. Three of thef -a spectra for modelA when s53 and
b15b2. The three curves are form*52, 4, and` whenb15b2.
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present model cannot be described by the jamming limit, the
resultant structure in the long time can be described geo-
metrically as stochastic fractals with self-similar features
characterized by fractal dimensionDf . The model we dis-
cuss could be a potential candidate to describe some features
of RSA since in the long time the resultant distribution is
indistinguishable from the random deposition of a mixture of
particles of rectangles.

The origin of the occurrence of multifractality in different
physical systems is yet not fully understood, despite its im-
portance in many physical systems. The two models we dis-
cuss give us the opportunity of finding the reason why one
needs an infinite number of independent exponents to char-
acterize the scaling relation in modelA while the later model
describes simple scaling. These two models can be very
good candidates to look for the answer since both models
give infinitely many conserved quantities, and both have
been derived in two dimensions yet show different behav-
iors. To find the answer we need to go back to the nature of
the model itself and search for the things we lost in moving
from model A to the second model. In modelA we had
stochastic homogeneity, which implies that the fragmenta-
tion of an object possesses an ergodic probability distribu-
tion. In this model, two infinitely long and orthogonal cracks
are placed on the objects independently and parallel to the
sides, i.e., they can pass through any point in Euclidean
space. Thus at each fragmentation event, the four fragments
can be of any shape, provided their total area is conserved.
Thus during the fragmentation process the dynamical vari-

able size is influenced by shape and consequently shape is a
dynamical quantity. While modelB describes two infinitely
long and orthogonal cracks that are allowed to be placed-
only at the middle of the objects to successfully produce four
equal-sized fragments, it implies that the size is no longer
influenced by shape, i.e., shape is determined by the initial
condition. That has been shown in Ref.@4# by solving the
rate equation explicitly. Note that it is one of the infinite
possibilities of the former model. Thus if there is a mixture
of particles of different size and shape, and if all the frag-
ments are equally likely to be picked from the mixture, in the
second model once a fragment with definite shape is picked
for fragmentation, this will only produce fragments of that
shape. Thus it is the broken ergodicity in space of shape that
causes the absence of multiscaling in the second model. One
often finds it convenient to make an analogy with the ther-
modynamics by identifyingMq,1(dm* ) as the partition func-
tion. We conclude with the remark that perhaps the origin of
multifractal phenomena associated with the system and the
underlying physics is governed by more than one intriguing
dynamical variable.
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