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Multifractality and the shattering transition in fragmentation processes
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We consider two simple geometric models that can describe the kinetics of fragmentation of two-
dimensional particles and stochastic fractals. We find a hierarchy of independent exponents suggesting the
existence of multiple-phase boundary for the shattering transition when two orthogonal cracks are placed
randomly on a fragmentmodel A). At the same time we find a unique exponent suggesting a single phase
boundary when four equal-sized fragments are produced at each fragmentatiorend#iB). We invoke the
multifractal formalism to further support the existence of multiple phase boundaries. In Wpdied each
choice of homogeneity index, the resultant fragments’ distribution exhibits multifractality on a unique support
when describing fragmentation processes and on one of infinitely many possible supports when describing
stochastic fractals. ModeB obeys simple scaling and produces self-similar fractals when fragments are
removed from the system at each time s{&1063-651%96)02508-1

PACS numbegps): 05.20-y, 02.50-r

I. INTRODUCTION interesting features have been found in one-dimensional
problems, such as a shattering transition that is accompanied
Fragmentation is a phenomenon that occurs in numerousy the violation of scaling and absence of self-averaging
physical, chemical, and geological processes. Recently, it hd48]. However, recently much effort has been devoted to
been of considerable interdgt—4]. In general, it is an irre- higher-dimensional problems where particles are character-
versible kinetic process in which a collection of fragments isized by both size and shape, unlike in one dimension where
sequentially broken. Although conceptually it is quite simplesize or mass is the only dynamical quantity of interest. This
to understand, its kinetic and many other physical quantitiegs motivated by the desire to move towards an understanding
are not fully understood, especially in higher dimensions.of the physical role played by shape in the fragmenting sys-
There have been a number of different approaches to undetems, since in reality particles are identified by their size and
standing the fragmentation phenomena of one-dimensionahape. Studying the fragmentation phenomena in higher di-
particles analytically. These include using the maximum enmensions has revealed interesting and nontrivial features
tropy method[5], using statistical and combinatorial argu- [2,4] with unexpectedly rich patterns of fragments.
ments[6,7], and using a kinetic equation. It is the kinetic  In higher dimensions the scaling regime does not reduce
equation approach, developed by Filipd®] after its origi- to a single variable, but more than one intriguing variable,
nal proposal by Kolmogoro{@], that has provided much of which causes the system to show multiscaliify This par-
our theoretical understanding. Interestingly, it has also beeticular feature is the signature of large fluctuations and
used successfully to describe other phenomena,; for exampleauses the absence of self-averaging. One can immediately
random sequential adsorpti¢h0,11 and stochastic fractals anticipate the occurrence of multifractality that became es-
[12,13. sential in recent years, to get a deeper insight into the struc-
In one dimension the fragmentation process is well studiure of such a wildly varying system. Multifractal phenom-
ied with a large class of exact and explicit solutions for theena have become very active in the research area and are
particle-size distribution function using different fragmenta-found to describe many physical systems in different con-
tion rules[14,15, in addition to scaling solutiongl6,17.  texts. These include voltage and current distribution in ran-
The scaling solutions are of considerable importance sincdom resistor networkg26], growth by diffusion-limited ag-
most experimental systems reach this behavior in the longregation(DLA) [27], collision cascadf28], and percolation
time. These are essentially the solutions in the long-timeand fracture[29]. The basic idea of multifractality is that,
(t—) and small-size(x—0) limit, where the probability- given a fragments’ distribution on a measure support charac-
distribution function evolves into a simpler form since it re- terized by a set of pointsD{;), a richer structure can be
duces the two variable problems to a single varidbieone  invoked. Namely, the whole seb¢) can be partioned into a
dimension. Moreover, this form is universal in the sense thathierarchy of subsets with their own fractal dimensidfs).
it does not depend on the initial condition. A number of The spectrum of these dimensions gives the full character-
ization of the object. Different clusters corresponding to their
fractal subsets are scaled with their own exponents.
*Permanent address: Department of Physics, Shahjalal Science The general form of the fragmentation equation when a
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X2 wheres=1,2,3,4 andF(x,,Xx—X4;y1,Yy—Y;) describes the

f({xi};t)f H dX F(Xg—Xq ,X1;--iXg rate at which objects having sidesandy break to produce
0 =1 fragments of sides xq,y;), (X—X1,Y;) (X1, y—Y;), and

at({xi;t)
—=—

L d (Xx—X41,y—VY;1). This two-dimensional problem can be
—x,x)+29 ] TT dx Fx)—xq,Xq5... x4 viewed as orthogonal, cross-shaped cracks are placed on the

{xiti=1 fragments that remain fixed at their spatial position, but the
F- 1 cracks are placed on objects to be fragmented homoge-
—Xq.,%a) F({X{ }51), (D) nheously. However, the way the cracks are to be placed is

determined by the choice of the kernel. Alternatively, we can
where f({x;};t) is the probability-distribution function of a assume that there is a perfect mixing of fragments that makes
d-dimensional hypercuboid-shaped object of sideg at  this kinetic approach so appealing to describe many physical
time t and F(x;— X} ,X};...;Xq—X},X}) is the rate of frag- SyStems, including the ball-milling and batch grinding of the
mentation of a particle characterized Ry, X,,...x4 into 22~ COmminution process. However, we can choose, for ex-

fragmented smaller particles characterized by their sides @MPle.s=1,2,3, which simply implies the removal of 4 of
(xi—x/) andx/ . Thed number of integrals ofix'} vari- the fragments at each event to form a stochasth fr_actal
ables is equivalent to placindynumber of orthogonal cracks [_12’13 at_long times. We define the moment of the distribu-
such that they are equal and parallel to their sides to productéon function as

29 fragments at each fragmentation event. Solving this gen- - -

eral equation for some fragmentation rule is very difficult. an(t):J xm‘ldxf y" iy f(x,y;t), 3
However, for some simple choice of fragmentation rule, the ’ 0 0

explicit solution to this general problem is found[i]. Ob- o _ o
viously in reality the cracks should appear at random on thavhich is the double Mellin transform of the probability dis-
object to be fragmented to produce a large number of fragtfibution function f(x,y;t), where m,n>0 is required for
ments with a varying number of sides. The present kineti€onvergence, and whetd, ,(t) is the number of fragments
approach is a simplified version of this real picture; howeverin the system at any timeandM (t) is the total area of the

it has been found that this simple model can provide thdragments. Since moments keep the signature of the distribu-
basic physics of the fragmenting systems. tion function, it is easy to deal with in some cases, to get the

In this paper we restrict ourselves to two dimensionsmain features of the fragmenting systems.
which is the minimum dimension to exhibit the role played
by shape. The rest of this paper is organized as follows. We A. Model A
attempt to investigate the shattering transition in order to
explain the rich pattern formed in the long time. Our treat-
ment is k_)ased on cons_idering the asymptotic regime to obtain F(X1,X2:Y1,Y2) = (X1 +X)P1(y, +Y,)P2, (4
information about scaling. Through our approach a new fea-
ture appears: instead of a unique-phase boundary we finghereg, andg, are known as the homogeneity indices. This
infinitely many phase boundaries because of the multiplehoice of fragmentation implies that the distribution of par-
conservation laws. This is in contrast[t8], where one vari- ticles upon breakage depends only on the ratio of the size of
able was associated with energy and the other with mass anble broken and breaking particles. The breakup timis
a single phase boundary was found. In order to clarify thedefined as
origin of this behavior we invoked the idea of multifractality,
which appears to require not one but infinitely many scaling 1 x y
exponents. We seek to develop a one-to-one correspondence  (y vy = fo dxlfo dy;F (X1, X=Xg;Y1,Y ~Y1)
between the existence of multiple phase boundaries and mul-
tiple scaling exponents. We also find that some fragmenta- =xP1tlybatl (5)
tion rules do not yield a single measure support, instead they
have an infinite number for each choice of homogeneity in-This immediately confirms that for a certain choicefand
dex. We consider a second model in two dimensions and wg, the fragmentation process can be fast enough such that
seek to explain the difference between these models. subsequent generation of fragments has a shorter lifetime

than the previous generation. In this case shattering is antici-
pated in which mass is lost to a dust of zero-size particles
Il. SHATTERING TRANSITION and is identified by the singularity of the kinetic exponent
[11,15.

The model in question describes a system in which par-
ticles are selected for fragmentation with a rate determined
af(x,y;t) x y by their area and shape. The relative importance of area and
[y JO dxy fo dyiF(X1=X,X1;y1-Y.¥1)  shape is determined by their homogeneity indieand 3,.

That is, if 8;>83,, for example, different particles with equal
o o area no longer compete on an equal footing to be frag-
+SJX dxlf dyif(x1,y1:t) mented, but rectangles with longer sides alongxiais are
Y more likely to be picked for fragmentation than others. Nev-
XF(X,X1—=X;¥,Y1—Y), (2 ertheless, once a fragment has been chosen for fragmenta-

We choose to study a homogeneous rate kdii@ll],

The fragmentation equation in two dimensions is
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tion, products of any area and shape are equally likely tang into the definition of the moment and insisting that the
occur. Substituting this choice of kernel into the rate equamomentM « ¢« (t) be a conserved quantity, we immedi-
tion yields ately obtain

afxy;t

p _X,31+1y/32+1f()(,y;t)

s
W=m*zl+sz. 9

+s aodxxﬁlfod P2t (xy,y1:t). (6
fx Yy Yy f0ayait). - () For a fixed positivez; andz, the curvew againstm* is an

) o ) upward convex in shape. This implies that for eaclvalue
We can substitute the definition of the moment into thethere are two differenm* Va|ues7 Say'n* and m'r, except
above equation to obtain a rate equation for the moment, \hen the gradient is zero. Using these two relationsfdor
two different m* values (*,m'), we can expresg; in

oM m,n(t) S
ot - mn 1 Mm+,81+1,n+ﬁ2+1. (7) terms ofz,,
An interesting feature of the above equation is that there are L s , o
infinitely many conservedtime-independentmoments sat- 1=t 22

isfying mn=s (multiple conservation lawsThis simply re-
flects the fact that fragments with a given area can have
infinite number of different shapes. We choose=m*,
wherem* is any number; then the rate equation for the mo-
ment determines then value to be s/m*, such that
M gmx (t) is time independent. As in the one-dimensional
case we propose a general scaling ansatz-as to be

&'he above equation implies that the two numbmaisandm?

corresponding to the same value will determine the ratio

of thez, andz, values. Note that, iz, andz, are of opposite

sign it is not possible to have two numbers give the same

value, as one can see from the asymptotic behaviow of

againstm®. Although it is possible when both are negative,
f(Xq, X0, ;1) ~tWeh(X %, X,t22), (8)  we do not need to concern ourselves about it since scaling is

not valid in this case.
where thez;’s are known as the kinetic exponents. This an- We now substitute the scaling ansatz into the rate equa-
satz is only true when both, andz, are positive. Substitut- tion to get

— P N p (£, + S L 7y dm L d72752¢ (7. 72)
1 2

d i)
W(€1,8)+zi€ ‘Js(j—;fZ)

tzl(ﬂl+1)+22(,82+1)—1: (11)

We demand that a scaling or time-invariant solution exists, B. Model B

and this immediately yields We shall now consider a different model by choosing the

following homogeneous kernels:
2)(B1+ 1) +25( Byt 1) =1. (12 g homog

F(X1,X5:Y1,Y2) = (X1 +X) Py, +y,)B28(2x, — X
Combining this with Eq(10) we find (X1.:X21Y1.Y2) = (Xa %) (Y1 Y2) 20(2% =)

X 8(2y1-Y). (15
S
Zl_s(,31+ 1 +m*mf(B,+1) (13 This model describes the case when two orthogonal cracks
are placed to produce four fragments of equal size and shape.
and Thus, it is just one of the infinitely many possible ways of
placing cracks in the former model. The breakup time
m*m’ (14) 7(x,y) =x"P1y~ P2 again confirms that for certain choices of

homogeneity indices the processes can be fast enough to
show the shattering transition. Using this kernel the rate
Thus any two nonzero and unequal numbers can give a set efjuation becomes

kinetic exponents to reveal that there exists a hierarchy of

exponents. The shattering is identified by the singularity in af(x,y;t) 1 1B

these exponents and hence we have an infinite-number phase et Rt U [C O AV

boundary in thég;,5,) plane, and all the phase lines meet at

(—1,-1). + 2Pt PagxBixPaf (2x,2y:t), (16)

ZZ:S(,B1+ 1)+m*mi(B,+1)"



54 MULTIFRACTALITY AND THE SHATTERING . .. 1129

and substituting the definition of the moments into the ratdering transition. The appearance of the unique kinetic expo-

equation we obtain the rate equation for the moments as nent confirms that there is a single phase boundary for the
shattering transition in the plan;,53,).

IM (1) 1 S

ot~ |22 g Mg ey (D. (17) ll. ASYMPTOTIC SOLUTIONS

A. Model A
Notice that this again gives infinitely many hidden conserved i _ . .
quantities. That is, assumimg=m*, any positive number as We now invoke the idea of multifractality that can char-
before the above equation implies that acterize the rich pattern of the resultant fragments’ distribu-
M 24 msin2-me (1) is the time-independent quantity. We tion in the long-time limit. Using Charlesby’s method, the

now substitute the scaling ansatz into the rate equation tglo.mem equatior(7) can be iterated to get all the h|gher
obtain erivatives of the moments. These can then be substituted

into a Taylor-series expansion M, ,(t) aboutt=0 to find
2181+ 2281~ 1 the solution of Eq(7) in terms of generalized hypergeomet-
ric function[19],

m .
B+l B+l

PG hér,6) + 2P PR 9(261,26)))

- 19 M. ()=
e (D) =2F2
W (€1,62) +2 %‘52)

a,,a_; t], (26

where, definingG=4s(8,+1)(8,+1), a. are given by
Insisting that a scaling exists gives

m n
a.= +
2181+ 2,B8,=1. (19 T 2(B1tl) 2(Betl)
Substituting the scaling ansatz into the definition of the mo- [M(Bo+1)—n(B1+D]*+G
insisti i m* - 4(B1+1)%(Byt1)? @7
ment and insisting again tha¥} . 4., (t) be con- (B1t1)(B2+1)
served, we obtain We are only interested in the long-time behavior of the mo-
ment. The asymptotic expansion of the generalized hyper-
w=m*z,+| 2+ In_s_ m*)zz (20) geometric function for large time gives
In2 '
M m,n(t)
Choosing any other nonzero and unequal number, sy m N
instead ofm*, yields _
r Bl F(,B2+1 N'a_—a,) B
21=2,=2Z. (21 ~ m n t e,
I'a,)T —a_ I‘[ - }
Combining this with Eq(19) we immediately get B Bit1l Bat1 28
7= 1 _ (22)  provided B;,8,#—1 for which the moment does not show
Bit B2 power-law behavior.
We now attempt to solve the rate equation directly to find the B. Model B
E:zzgioexiﬁnem' We multiply the rate equationtogn both For this splitting model we already know that the system
9 reaches a scaling regime with the kinetic exponent given by
IF (Xq X 1) 1 Eq. (22). Knowledge of this information is sufficient to write
t 3—;2’: - P2 (xy  xp3t) the asymptotic solution for the moment, providégt 3,>0
is as
+2%(2£1)P1(26,) P2 (2x1,2¢031), (29 M n()~A(m,n)t-Lmen=@+insin21(s1+62) - (29)

whereg; = x;t¥#1782) In the limitt—0 andx—, such that where, 2-In s/In 2 is determined by using hidden conserved
&—constant quantity, one can solve the equation to give quantities for which the moment becomes time independent.

} This solution has been derived in RE21] explicitly using
f(xg. %) ~T(t A BII (g, &5). (24 different methods.

Substituting this into the definition of the moment and using IV. FRACTAL DIMENSIONS
the condition thatM _m+(t) is time independent
gives m* 2+In¢lin 2 m*( ) p A. Model A

When Xs<4, at each time step-4s fragments are re-
f(Xq,Xo;t) ~tHALT B p( &, £)). (25  moved from the system that do not affect the kinetics of the
system to describe the creation of stochastic fractals. In order
The same kinetic exponent has been found in R&f.in  to determine the fractal dimension of the support, we find it
which it has been derived from the explicit solution andconvenient to use the box-counting method. We may choose
proved that the singularity in this exponent leads to the shato associate each hidden conserved quantity with a set of
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points in93? space. In order to measure the set we can subvalue as well as on then* value, as we shall see now. For
divide the space into small squares of sidgs , where 1<s<4 and in the limit§,+—0 the total number of boxes

S IS defined as required to cover the set of points can be expressed as
* * — * _ 2 _
5o e IM s 4jm (t), 30 (N(5m*)>~5m*7(m BB (Ba— B2+ G~ (B1+By+2)}
My (1)
—Dy(m*,B1.82)
such thatu;(8,+) denotes the measure within théa box. =6, T (3D

Obviously, whens=4 the measure will count the complete
set of points in the plane a%,» —0 and independent ah*.  We define A.=m*(8,+1)*4/m*(B,+1), to express
However, for kKs<4, the measure will depend on te y(m*,B;,8,) as

2
y(mM*,B1,B2)= : (32
A= VAZ+G—(B1+By+2)+ (B2~ B2)*+G
|
The exponentD¢ is the Hausdorff-Besicovitch dimension M e 4 (1)
that measures the properties of the set of points. Note that O = M—(t) (39
1,1

y(m*,B1,B82) = v(s/m*,B,,8,), and in the limitm* —co,

In the limit o, —0 the total number of boxes required to

2 cover the set of points can be expressed as

y(m*,B1,B2) = (Ba—B1)?+G—(B1+Ba+2)

(33) (N(t))~8 "2, (39)

Moreover, whens=4, Dy is independent ofn” and indi- jike modelA, here the fractal dimension is independent of
vidual B values, i.e., independent of the intensity of fragmen-ya m* value and of homogeneity indices. This reveals that a

tation. However, for ¥s<4 and for ﬁxedél’BZ values,Dy  gjngle scaling exponerd; can describe such a self-similar
increases monotonically againsin{+4/m*) starting at a structure.

value when (* +4/m*) is minimum and saturates at 2 as
m* —o. Furthermore, wherg,=8,=8 [21] D; is indepen-
- B1=F2=F [21] Dy P V. MULTIFRACTALITY
dent of 8.
A. Model A

B. Model B It is important to realize that a single expon@y is not

As before we may choose to associate each hidden cosufficient to characterize the present system under investiga-
served quantity with a set of points 1? space. This space tion. To show this we now express the quantity,, ,(t) in
can be subdivided into boxes of sides terms of the box lengtl$,;« as 6, —0 to give

_ * _ 2 _ _
Mm,l(ém*)’“&m:(m B1.B)INIM(Ba+1)— (B1+1)]12+G—m(By+1) (ﬁ1+1)}_ (36)

Obviously, the exponent of the above equation whenl  function motivated by the analogy with thermodynamics.
gives the dimension of the measure of the support Now, following the approach of Reff22,23, the integral in
From the definition of the moment we can write Eq. (37) can be evaluated by the steepest-descent method. If,
say, x* is the value for whichF(x,q,t) has a maximum
value, then we have
Mg ()= | xIn(x,t)d In x:f efxatd Inx, (3
0= [ xnixy @7 i )
dInx = (38)

X=x*

wheren(x,t)=fdy f(x,y;t), n(x,t)dIn x is the number of
branches characterized hyin the interval[lnx,Inx+dInx]  In general, for each value ofthere is a corresponding value
andF(x,q,t)=In[n(x,t)] +glnx. In the multifractal formal- of x=x*(q), and so immediately one can write the follow-
ism the quantityM 4 ,(t) is often identified as the partition ing scaling ansatz:
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X* ~A(Q) 5;;1(11) ' (39) see thaM, () can be partioned into boxes of sidég-
such that the probabilities gf;( ) are normalized if we
. replacem by
N(X*, S ) ~B(A) Syt (40)
1+ (s—1)k=q(k). 47

since
Hence we can write the weighted box numigire so-called
M g 5m*)~5r;3a(q>—f<q>_ (41) partition function as

As q varies from—x to «, x* takes all the values depending

— k(m,B1.82) s 7(kB1.82)
on q values and hence-forth we calbitinstead ofx*. We Mica( 5m*)_241 M (O )~ 0. .

find it convenient to define the quantity (48)
In x a(q) Using (47) in (36) and then comparing witf¥8), we imme-
ym — = (42) diately can obtain the expression fdik), the mass exponent
In Xmax a(oo) to be
Therefore, for each value of there exists a corresponding . 5
valueq(x). From (40) we get 7(k)=y(m*, 81, B){V[(B2— B1) +(s— 1)(Bo+ Dk]*+G

— (B2t 1)(s—Dk—(B1+B2+2)}, (49)

which meets the essential requirement, name(l) is the

whered(v)=f(q(v)) is the spectrum of the fractal subset and dimension of the support and1)=0. We thus see that there

C(v)=B(q(»)). Using (39) and (40) we can also write exists a spectrum of mass exponefk), which character-
izes the distribution of the particle size. Nevertheless, the

N(X)~ C(v)x~P(/va(=) (44) mass exponent(k) is nonlinear, which simply reveals that
' there exists a spectrum fractal subset for each support

This scaling form expresses the fact that the fragmentatiowhether the support itself is fractal or not. To find the fractal
process can be partitioned into subsets when each is charatPSet we use the usual Legendre transform of the indepen-
terized by the value=Inx/Inx,,,. Each subset has an inde- dent variablesr and k to the independent variable and
pendent fractal dimension given lly(v) and by the singu- f(e:

larity exponenta(«). Scaling of this kind has also been

found for the random resistor network and in the context of dr(k)

N(X, 8 ) ~C(v) 608", (43)

diffusion-limited aggregation. a(k)=- dk ’ (50
We shall now attempt to find the explicit expressions for
these exponents. In order to do this we write thmeasure and
of the weighted box number as
f(a(k))=ka(k)+ 7(k). (51
Mm,l(dﬁm*):E Mim5?n* = M 5m*)5;1n* . (45 These relations yield
1
It follows from Eq. (43) that asé;,—0, a(k)=y(m*,B1,B2)(s—1)(By+ 1)[ 1
if d>
Mons@ )= i g @9  (Bo= B (Bt (5= 1)+ (Bo+ 1) (5~ 1K
VI(B2—B1) +(s—1)(B,+ DK]*+G
The critical value for which the measure tends to a finite (52)
value is called the mass exponedf{=7(m). Note that
d.=71) is the dimension of the measure support. We thusand
fa(k))=y(m*,B1,82)1 VI(B2—B1) +(s—1)(Bo+ LK+ G~ (B1+ B2+ 2)
_ (5= 1)(Bo— B)(Bo+D)k+(s—1)4(B,+1)%K? (53

VI(B2—B1) +(s— 1) (B + 1KI*+G
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pendent of the definition of the characteristic length. Evi-
dently, there is a constant gap between the consecutive mo-
ments. Note that fos=4 we again recover the full set of
points in the planéD;=2).

(o)

m =00

VI. CONCLUSIONS

Model B we consider as a supporting model since it is
simple and its important aspect is known from Réi. It is
model A that is of primary concern in understanding what
shattering means when there is more than one dynamical
variable in the system. We find that instead of a unique phase
boundary for the shattering transition we find a multiple
phase boundary. We attempt to explain this surprising fea-
ture by the idea of multifractal formalism. In the case of
model A the support can be partitioned into infinitely many
\ subsets of their own fractal dimensions. That is, each subset
I scales with different kinetic exponentgs-a-vis different
fooR fractal dimensions. Consequently, each subset has its own

phase boundary for which the corresponding subset of the

FIG. 1. Three of thef-a spectra for modeA whens=3 and ~ SUpport goes into the shattering transition.

B1=pB,. The three curves are fon* =2, 4, and~ when 8;=p,. When the system describes the fragmentation protess
=4), we find that the system gives a unique measure support
Note that all the exponents depend on the homogeneity indiD+=2) on which subsets can be distributed. However, any
ces if only B;#3,. We find that if we choose homogeneity observable fluctuates strongly from one realization to the
indices to be at any point in the shattering regime, the whol@ther. Although each realization is statistically self-similar in
formalism and analysis breaks down. That is, in these rethese fluctuations, it means that averaged quantities of any
gimes the moment does not show power-law behavior. Opbservable can be measured with a reasonable accuracy only
course, one point on the phase boundary where all the pha#rough ensemble averaging. That is, a single experiment for
boundary meets$B,=p,=—1), the moments exhibit expo- a longer time will not give any averaged quantities with good
nential behavior instead of power-law behavior. Physicallyaccuracy, but a large number of independent experiments are
the f(a(k)) versusa curve simply suggests the existence of required, which is a very important property to know for real
intertwined fractal subsets describing the measure suppor®’ numerical experiments. But when describing stochastic
The expression fof (a(k)) is strictly convex in nature, as fractals, one associates pictures of wildly varying probabili-
can be seen from Fig. 1. We find that when the system deties of the measure, since at each realization the dimension of
scribes stochastic fractals there exists a hierarchy of fractdhe support can be different. This reflects the fact that in the
supportD; that depends om* for a fixed value of homoge- case when a system describes stochastic fractals, the entropy
neity indices. In Fig. 1 we plof(a(k)) againsta(k) for of the system has one more source than in the fragmentation
three differenm* values wherB,; =, to show that there can process. This extra source arises due to the competition
be infinitely many possible supports on which a measure cagmong the fractal support for different” in a given experi-
be distributed when fragments are removed from the systerffient. Note that when three fragments are removed from the
at each event. It is to see that the preceding analysis can Is¢stem at each time evef#=1), the dimension of the mea-
repeated foM, 4(t) as a partition function since the defini- sure supporty) is zero where the measure can be distrib-

tion of moments are symmetric in their variables. uted.
It is interesting to notice the connection between matdel

for 1<s<4 and the random sequential adsorptiBi$A). For
s=2 this model has been discussed in the context of the RSA
Doing a similar calculation for the second model one carof needles in Ref[30]. We remark that if objects are of a

immediately find that despite the fact that there exists infidefinite size and once deposited are clamped in their posi-
nitely many hidden conserved quantities, the fractal dimention, the resultant configurations in the long-time limit are
sion is independent ofi*’s and homogeneity indices, giving highly nonergodic with a strong non-Markovian nature. Such
a unigue measurement, not a spectrum, as it should be, a system has a universal feature described by the jamming
limit, which is less than random close packing. Our model

Di=—o0, (54) for 1<<s<<4 can be thought of as the deposition ofglpar-

In2 ticles at each time step. The difference between the true RSA
and our system is that fords<<4 particles are deposited in a

whereD;=f(a) and 7(k)=D;(1—K) to reveal that for £s rather restricted set of positions and the size of the particles
<4, the system describes the self-similar fractals and henc® be deposited is determined by the available space. Conse-
confirms the existence of scaling. In this case, the same scajuently, the system gains the ergodic nature with which the
ing exponenD; describes the asymptotic behavior of all the scaling is possible, and in the long time instead of reaching a
characteristic lengthil "(t) =M, 1(t)/M1 5(t)] i.e., inde-  jamming limit it shows power-law behavior. Although the
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present model cannot be described by the jamming limit, thable size is influenced by shape and consequently shape is a
resultant structure in the long time can be described geadynamical quantity. While modeB describes two infinitely
metrically as stochastic fractals with self-similar featureslong and orthogonal cracks that are allowed to be placed-
characterized by fractal dimensid»;. The model we dis- only at the middle of the objects to successfully produce four
cuss could be a potential candidate to describe some featurggual-sized fragments, it implies that the size is no longer
of RSA since in the long time the resultant distribution is jnfluenced by shape, i.e., shape is determined by the initial
indistinguishable from the random deposition of a mixture ofcondition. That has been shown in R@4] by solving the
particles of rectangles. rate equation explicitly. Note that it is one of the infinite
The origin of the occurrence of multifractality in different possibilities of the former model. Thus if there is a mixture
physical systems is yet not fully understood, despite its imuf particles of different size and shape, and if all the frag-
portance in many physical systems. The two models we disments are equally likely to be picked from the mixture, in the
cuss give us the opportunity of finding the reason why on&econd model once a fragment with definite shape is picked
needs an infinite number of independent exponents to chafor fragmentation, this will only produce fragments of that
acterize the scaling relation in modelwhile the later model  shape. Thus it is the broken ergodicity in space of shape that
describes simple scaling. These two models can be veryayses the absence of multiscaling in the second model. One
good candidates to look for the answer since both modelgften finds it convenient to make an analogy with the ther-
give infin.itely many cpnser\{ed guantities, and both haVemodynamics by identifyingV  1(5,) as the partition func-
been derived in two dimensions yet show different behaviion, We conclude with the remark that perhaps the origin of
iors. To find the answer we need to go back to the nature ofyytifractal phenomena associated with the system and the

the model itself and search for the thlngS we lost in mOVingunderiying physics is governed by more than one intriguing
from model A to the second model. In modé&l we had  gynamical variable.

stochastic homogeneity, which implies that the fragmenta-
tion of an object possesses an ergodic probability distribu-
tion. In this model, two infinitely long and orthogonal cracks
are placed on the objects independently and parallel to the
sides, i.e., they can pass through any point in Euclidean The author is indebted to G. J. Rodgers for numerous
space. Thus at each fragmentation event, the four fragmentiscussions during this work and to P. Singh for valuable
can be of any shape, provided their total area is conservedomments on the shattering transition. The author would like
Thus during the fragmentation process the dynamical varito thank the CVCP for financial support.
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